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Conventional methods of structural dynamic analysis are intuitive in
nature. Equations of motion are obtained from an assumed model that,
at best, has only a reasonsble comparison to the actual structure.
Because of their intuitive foundation, conventional analyses leave much
to be desired with regard to the adequacy of proposed '"fixes' or the
dynamic effects of modifications such as gun pods, radar units, and
external stores.

This contract was initiated to develop a theory of structural dynamic
testing which could be used to determine, directly from measurable test
data, the equations of motion, eigenfunctions, and natural frequencies
of a complex structure such as a helicopter. Within the framework of
the idealized assumptions, the following major goals have been achieved:

® Theory derived and proven - an exact method for identifying the
parameters in n equations of motion of an n-degree-of-freedom
linear structure was developed and shown to be theoretically
correct.

@® Theory shown to be numerically sound - the method of implementing
the theory was designed to eliminate ill-behaved matrices and
excessive sensitivity to experimental or measurement error.

® Theory found to be experimentally practical - precisely controlled
statistical computer experiments demonstrated that the theory 1is
operable using measured input data of the type common to helicopter
structural testing and with errors in excess of the accuracy of
available testing equipment.

A second contract has been awarded with the principal objectives of
determining the adequacy of the chosen n degrees of freedom and the
applicability of the theory of nonsymmetrical, three-dimensional structures.
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ABSTRACT

It is shown that the mass, stiffness and damping parameters
in Lagrange's equations of motion of an n-degree-of-freedom
damped linear elastic structure can be determined directly
from impedance-type test data without prior acsumption of
an intuitive mathematical model. The damping is assumed to
be such that the modal vectors are orthogonal with respect
to damping.

A method is derived for determination of the exact modal
eigenvector of the dominar+ mode at any forcing frequency
by iteration on the damped impedance measurements in matrix
form. A similar eigenvalue equation yields the vector in
the inverse transpose of the modal matrix; this vector, .
called the gamma vector, is identified with the dominant
mode. The generalized masses, stiffnesses and damping terms
are related to the mass, stiffness and damping matrices of
the equations of motion through products of the gamma vec-

tors.

Using the gamma vectors, obtained by iteration on test data,
the natural frequencies and other modal parameters are
determined. Natural frequencies which are not visible in
response plots may be determined by this method.

Computer experiments were conducted to test the sensitivity
of the theory tc errors in input data.

The work performed under this contract is reported in two
volumes. This volume contains the theoretical development,
application of the theory and computer experiments demon-
strating the theory's practicality.

Volume II documents the computer program.
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INTRODUCTION

Because of the severe rotor-induced excitations, helicopter
structures and helicopter components must be designed to
withstand heavy dynamic loadings. The weight, performance,
structural integrity and overall mission effectiveness of a
helicopter are affected, in part, by the capability of the
design engineer to predict and control the dynamic response
of the fuselage and mechanical components.

Although most of the dynamic analysis of a helicopter takes
place after the first static test ship is built, the heli-
copter dynamicist conventionally works with intuitively based
equations of motion, or mathematical models as they are often
called, and relies on structural dynamic testing for corre-
lation and trial and error improvement purposes.

To obtain the equations of motion, the dynamicist must reduce
the physical structure to idealized elements which lend them-
selves to analytical treatment. This process of abstraction
requires skill and judgment and necessarily involves consider-
able uncertainty. When, after modifying the analysis or
changing the assumptions upon which it is based, the analytical
predictions of structural response eventually agree with the
test results, the dynamicist can use his mathematical model

to indicate structural changes which might cure an undesir-
able dynamic condition.

This report shcws that sufficient information can be obtained
from impedance-type shake testing of an n-degree-of-freedom
helicopter to determine the linear, structurally damped
equations of motion directly from the test information,
without further idealizing the helicopter structure. The
only input information required in this theory is measured
mobilities and the approximate frequency of the n-th mode.
The moda. eigenvectors (mode shapes), "undamped" natural
frequencies and damping coefficients can also be determined
with this theory using the measured mobilities, as these
quantities cannot always be approximated directly from the
dynamic responses.

When the equations of motion can be determined from test
data in helicopter engineering practice, the dynamicist can
avoid most of the uncertainties of present-day analytical
prediction of structural dynamics. The interface between
analysis and test, which is now largely at the output end
of both, will begin to disappear as the abstraction of
theoretical analysis and the physical reality of testing



blend more into a single engineering method for defining
the helicopter structure and predicting its performance.
With the consequent increase in the reliability of dynamic
prediction, the end-product helicopter will be produced with
less engineering lead time, the user will be justified in
placing greater confidence in the integrity of the ship,
the effects of desired changes will be more rapidly evalu-
ated, the number of trial and error fixes should be dras-
tically reduced, and the analyst can improve his intuitive
creation of mathematical models by one-to-one comparison of
his idealized parameters in the equations of motion with
those actually determined from the helicopter.

The work reported herein has not eliminated all idealized
assumptions: retained are the assumptions that the structure
has a finite number of degrees of freedom and that the
structure can be described by second-order linear differen-
tial equations in which the dissipative term is proportional
to amplitude. All assumptions, or prior knowledge, of the
magnitude of damping or the magnitudes or distributions of
mass and stiffness have been eliminated.

Methods for determining equations of motion from test data,
a task referred to as System Identification, must be numeri-
cally as well as algebraically manipulatable. Many theo-
retically sound procedures, such as techniques for reversing
the dominance of extreme eigenvalues in matrix iteration, are
usually numerically impractical on a useful scale even with
a computer. System Identification theories, to be practiczl
in engineering, must be workable with a reasonable degree of
experimental error. This is a most stringent requirement.
To test the sensitivity to input error of the techrique
described in this report, a series of computer experiments
incorporating experimental errcrs was carried out.



THEORY

ASSUMPTIONS

It is assumed, for the sake of rigor, either that the
structure is describable as an n x n linear mathematical
model, which is tc say, among other things, that it has as
many degrees of freedom as there are measured points of
interest on the structure (i.e., the order of the response
or "mobility" matrices), or that the modes which are
ordinarily above the n-th mode, for n points of interest,
have negligible effect on the response of the n-th mode.
Violations of this assumption, which is more cormmon than
than not, in nature, plague all lumped parameter analyses.

It is also assumed that the mass and stiffness matrices
are symmetrical and invariant with frequency. It is
expected but not assumed that both are positive definite,
that is, that the stiffness matrix can give rise to only

a positive potential energy and the mass matrix can yield
only a positive kinetic energy unless all motions or dis-
placements are zero. An exception in the case of the
stiffness matrix would be for a system with one or more

of the six rigid-body degrees of freedom unconstrained, in
which instance the stiffness matrix would be neither positive
definite nor negative definite. This case is neither ex-
cluded nor considered in this report.

The theory is also based on the assumption that the damping:
if any, is such that the modal eigenvectors (mode shapes)

are orthogonal with respect to the damping. It is not
necessary that the damping be small. This assumption re-
garding damping is both necessary and sufficient for the
derivation of all the fundamental principles of this approach.
However, for purposes of calculation, we can choose to rep-
resent this damping in any of several accepted fashions

which do not violate the orthogonality assumption. Beginning
with Sorokal, it has been common for aeroelasticians to
represent structural or hysteretic damping as a nondimensional
constant multiplying the stiffness divided by the forcing
frequency which puts the damping terms in phase with the
velocity (essential for energy dissipation and therefore a
necessity for all types of damping terms) but proportional

to the displacemeut. Many structural dynamicists, on the
other hand, prerer to consider the damping proportional to
velocity (viscous damping) but nevertheless defined as a

modal propertK (see Raney)2. The derivations presented
here use Soroka's representation of structural damping



with the coefficients assigned uniquely tc each mode.
This choice was made to reflect most closely the current
practices in helicopter aeroelastics work.

Other representations which could have been used include a
damping coefficient proportional teo the generalized mass and
a coefficient proportional to any linear combination of the
generalized mass and generalized stiffness. Some of these
representations might be found to be approximations of
Coulomb or "non-orthogonal" viscous damping sufficiently
accurate for engineering purposes if and when there is an
accumulation of experience in the identification of mathe-
matical model lumped parameters of helicopters or other
structures.

It is not assumed that the modes are necessarily all separated
so that their existence could be determined from a visual
examination of any or all driving-point or transfer plots;

in other words, the procedure can reveal modes which are
completely masked. This follows from the condition, dis-
cussed in the derivation, that the domirant eigenvalue must

be greater than (not necessarily greater than the sum of

all) the eigenvalues of the other modes.

DERIVATION

Derivation of the Modal Expressions for Mobility

The equations of motion of a linear system are

m]{y} + [cl{y} + [k]{y} = (£} (1)

Assume a steady-state solution of the form
{y} = {y}e*“% ana (£} = {£}e*“t

to give

. 1 I = NP R b
[3tmle - 20y + [e1] 50 = (£} or (Glay,)) + (=], Dy}

= [z,,1v} = (€] (@)

Zij(w) is called the Element Impedance (measured at w) in
this work, and it is seen from the above equation that

4 el

= BE /2

Z 7
iy 1

|8

J



Premultiply Equation (2) by [@]-T(¢]T and postmultiply by
[@][0]-l where [¢] is the matrix of modal vectors. Then

O (CRUIOPEF DHOIT) REORCIO) TN

(3)

The diagonal generalized mass matrix is given by

[7\]= (417 (m] [¢] (4)

and the diagonal generalized stiffness matrix by
T
[xJ= (617 (k] [+ (5)

Assume that

te171c1 to] = 2[ok] (6)

such as would be expected from structural damping in a
lightly damped structure. Equation (3) now becomcs

(2 ()] = m'T[j - 29 + %’-‘Jm"l (7)

Define the i-th mcdal impedance as

. 1 93K 4
= I (Re - S

*
1(w)

Z

and substitute into Equation (3) to give

_ e % -1
[z ) = [0] [z(w)Jm (8)

8§i/8fj and is egual to

The mobility is defined by Yij
the ratio of the velocity phasor along the coordinate 1 to
the external force phasor along the coordinate j when no
other forces are externally applied.



[¥) = [3y/3£) = [3£/39] Y = (2]} (9)

Therefore, from Equation (8) it is seen that

_ 1 7017 = o1l 11eiT
[¥,)) = (0] " (017 = 1o1f¥y,,] 10) (10)
w)

The modal mobility of the i-th mode measured at w is

—%

2,
* - v*R Lo ¥ _ 1 i(w)
Yiw T Vi Y M TF T F )2
' (w) i(w)
*R . %I 9iXi Xi
- itw)” 2 i(w) _ w - j(q&w " e
*!R 2 *T 2 9iKi. 2 i 2
(z )¢+ (2 ) (—=)"+ .0 - —)
ilw) i(w) v " -
(.02 -1
2 2 ( Qi )
R O I ) _j_( w?\
“Bi\a, 2/ e K wll; QiZ}g? R
T Qi ) & Qf (11)

Figures 1 and 2 illustrate the influence of the i-th mode

on the real and imaginary mobilities measured at w. It is
seen that the magnitude of the real modal mobility drops
sharply as the forcing frequency gets further from resonance:
three orders of magnitude in less than two octaves for

g = .10. From Equation (10), we write the real mobility,

R, _ *R T
R = [ol[y(w)j (0] (12)

and we note that because the real modal mobilities of modes
far removed from the forcing frequency become negligible,
compared to nearby modes, the real mobility matrix at any
frequency is usually significantly affected only by modes
in the vicinity of the forcing frequency. Looking at this
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Figure 1. Dimensionless Plot Showing the Influence
of the i-th Mode on the Mobility at w
for g = .10.

7



IMAGINARY

L8]

Fiqure 2.Dimensionless Plot Showing the Influence
of the i-th Mode on the Mobility at w

for g = .10.




another way, any measured real mobility matrix reflects the
influence of only the most dominant modes in that frequency-
of-measurement region. Therefore, it is numerically im-
practical to use the real mobility matrix measured at only
one frequency to determine parameters other than those
associated with neighboring modes.

Figure 1 shows that the effect of the i-th mode on imaginary
mobility measurements far below . is negligible. However,
the effect on imaginary mobility fatrices asymptotically
approaches a constant with increasing frequency above Qi.
An imaginary mobility matrix contains the effect of all
lower modes in proportion to, cr greater than, the magnitudes
of their generalized masses. Therefore, it is numerically
impractical to use imaginary mobility matrices to determine
properties associated with natural frequencies far above

the forcing frequency.

Were it not for these characteristics of the modal mobility,
it would be possible to determine the system parameters from
the n equations in n unknowns obtained from mobility matrices
measured at any two forcing frequencies. However, the pre-
cision of measurement which would be required to do this for
most systems (say, six or ceven significant figures for a
decade frequency range) is impossible to achieve. The mode-
by-mode approach derived below avoids this problem.

Derivation of the Dominant Mode Eigenvalue Probiem

Equation (10) may be written

P"
B * T * T

i=1

where {¢} is a column in [¢] and N is the order of the
matrices. Define (r] [¢]-T ard write Equation (8) as

N
[Y(w)]-l = lz,,,] = [r][—l][r]T =Y (v v} aa
v+ =1 Y,
(w) i(w)

where {y} is a column in [T']. Note that {Y}§{¢}. = 62 by
definition of the inverse. ]



Similarly,

N -
R _ 'r
vyl =% (6},10}}
(w) Ty l(w)
N T
R ,-1
i(w)
[yl 1'1=§; v ) (15)
(w) PRSI G
i(w)

Each matrix Y i(w ){¢}i{¢}§ and {Y}i{Y}f in Equations

Y5 (w)

(13) and (14) is of rank one, but the summation of as many
of these successive modal matrices as the order N of the
matrix is a nonsingular matrix.

Consider an imaginary mobility matrix measured at a frequency
Wy which is high enough to be significantly influenced by all
N ‘modes; Wy would usually be in the vicinity of or above the

N-th mode.” Take the inverse of this matrix and postmultiply

by a real mobility matrix measured at any frequency W

*R
N 1(wk)
1(wh)
It is seen that because [¢} {Y} 1' Equation (16)
becomes the eigenvalue problem
*R
iyt 17 1{y} Yl(w"){}
Y o Y = =g
(wh) (w k) i v (17)
1(wh)
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Among the quotients Yi(w )/Y ) there will be one quotient,

1(wh

*
say Yd?w )/Yd{w X which is greater than any other: this
k h
is the dominant mode. If Equation (17) is multiplied by

N
an arbitrary vector {x} =L ai{Y}i and the multiplication
i=1
is iterated in the conventional manner, the process will
converge on the eigenvector and eigenvalue of the dominant

mode. The eigenvalue Y ? )/Yd( ) is not presently used
“n

in this theory. The eigenvector is the gamma vector of

the dominant mode, {v} Usually, the dominant mode natural
frequency will be the gearest natural frequency to the
forcing frequency Wy -

If the dominant mode is removed from Equation. (17), then
the iterations will converge on the next most dominant mode.
Removing the dominant mode from the real and imaginary
matrices of Equation (16), we write

-1 1l *
[Y - - R T
h
- -1.,R _ J"R G [ T
(¥ ()17 VG ) Ya () Miap)) 103alely
*R
d(w )
- s (gt )1+ =5 0T = 1R
y ! [ ]
Yd(wh) = Yd(wh) U
*R *R
d(w )
“ale) 1y (9T 1 {y} {y)T Ya ()
vl 4 a~FT YaY d[Y(w W+ *1_mk {Y}d{Y}g
d (wy) ¥d (wy) Yd(w

= ([Y(w 17t - Tl—{y} (v} )[Y}}w )]
d(wh) k
(18)
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But

L o T il
Yalu) = al¥i )] U (19)

as can be seen from Equation (13). Therefore,

I -1 1 « 4T R
(Y ] - - {y} {v} )[Y 1{v}
( (wp) (yigivl, 1yl 9 @/ () iranl
h

*R
Y
d+1(w,)

TR tylan (20)
d+1 (w,)

where the subscript d+1 designates the second most dominant
mode in the segment of the frequency spectrum defined by the
eigenvalue.

The transpose of Equation (16) is an eigenvalue problem,
the eigenvector of which is the modal vector {¢},. The
eigenvalue of Equation (16) is identical to the gigenvalue
of its transpose. The modal vector {¢}, is obtained upon
convergence after iterating using the tganspose of Equation
(16).

Determination of Modal Parameters

It follows from Equation (13) that the mecodal mobilities are
given by

* _ T
[Y(unJ = 1Ty 101 (21)

and, therefore, the orthogonality condition for gamma
vectors is

*

T _ i

The modal impedance of the i-th mode at wj is

12



—%
Y

* i(w.) g.xX.
_ o . _ 1
Zi(uu.) - * 7% w. ¢ J(”iwj w.’(i)
J IYi(w.)l J J
]
It follows that
*T N
*T _ Yy (Qj) ) ~(};[Yi(wj)]{Y}i
Zi(wj)_l* l2‘( e Y )2
Y5 (w) Iydilyy o)1 iv SPris - RSO
] ] J
and
*R R
Y. TiY.
*R _ 1(wj) _ {Y}i[ 1(wj)]{Y}i
Zi(‘*’j)—l* 12 ((\T R )2 4 ([T T )2
J ] ]
(22)
Then
*T *T _ 2 2
whzi(wh) iji(w ) 7ql(wh wj ) (23)
and
2 *I 2 *1 _ 2 _ 2
wj whzi(wr) - ey iji(%j) = i(wh wj ) (24)

Dividing Equation (24) by (23), we obtain the natural fre-
gquency of the i-th mode:

Z*I Z*I
W. o, w s
02 Kil,, T 7ty (25)
i T T Y% S

w2z, w.2.
h 1(wh) j 1(wj)
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From Equation (23), we find the generalized mass of the i-th
mode:

QI QI
“nZi(w) - “3%i (03)
Ri - p) )

(L)h = (L)j

(26)

The generalized stiffness is found from Equation (24) or by

;o= 0H, (27)

The damping coefficient for the i-th mode is most readily
given by
Z*R
“5%1 (w,)
g, = 1
i ki (28)

which follows directly from Equation (7), and may also be
obtained by

*R
W, zi(wi)
9; =(‘L2 '1)—*1 (29)
Q. 7"
i i(wy)

Using a measurement of real mobility taken precisely at .
resonance, we may calculate the damping coefficient from

1
g, = —gg————
i R
Yi(Qi)QiWi (30)

This follows from Equation (1l1).

Parameters of the Mathematical Model

Premultiply Equation (4) by [T] and postmultiply by [I‘]T
to obtain

N r N R
(r) = }:mi{y}i{y}i =2, [mly (31)
i=1 i=1
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In similar fashion,

T N *
(k] Zn (v (v}] =2 k) (32)
i=1

Set % (d] = (c)] and note from Egquation (6) that
N N .
@y = 3 g, K, {vi {Y} =2 ld) (33)

1- i=]
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METHOD OF APPLYING THE THEORY

SUSPENDING THE AIRCRAFT

It is immaterial at this point in the research how the
aircraft ic suspended except that it is important, of
course, that the manner of support does not cause the
aircrafc to dynamically couple with other structures such
as that of the hangar, the floor, or the ground. If a
relatively stiff suspension like the landing gear is used,
then the ship should be parked on a pad of sufficiently
high impedance that, for the frequency range tested, it may
be considered infinite; then the landing gear component
impedance terminates at ground.

Soft suspension may, of course, be used to simulate the
aircraft in free flight, and this is the common procedure.
However, as shown previously in the derivstion, the imag-
inary mobility at every frequency is affected by the modes
of all lower natural frequencies, no matter how low. It
follows that the conventional criterion for free flight
simulation (that the suspension natural frequency must be
very low compared to the lowest flexural natural frequency)
is a necessary condition but not a sufficient condition for
free flight dynamic simulation in any dynamic test. No
further consideration is given to this question in this
report.

TEST SETUP

Choosing the Points

The dynamicist selects n "points of interest" on the struc-
ture. These correspond to the points he would use in a
conventional analysis and include the points at which the
major forces of flight would be applied and the points at
which response is of greatest consequence to the mission

cf the aircraft. For example, the hub and the pilot's seat of
a helicopter would certainly be among the points of interest.

A motion transducer (e.g.,accelerometer) is placed at each
of the n points of interest and is oriented in the direction
of motion for which the equations are to be written. A
unidirectional exciter is placed at one of these points of
interest and is oriented so that the line of action of the
impressed 7 rce coincides with the principal direction of
the transducer at that ;oint. The shaker provides the only
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external force excitation (restraint reaction forces are not
considered i:xcitation), and only one shaker is used.

The aircraft is excited over a frequency spectrum encompassing
as many modes as there are points of interest. The time
rate-of-change of frequency should be slow enough in the
frequency bands of interest so that the dynamic respcnse is
essentially in a steady state. The force and the motion of
the n selected points are recorded.

The test is repeated for force excitation at each of the n
points of interest, forcing at only one point each time.

Recording the Data

Although it would be possible to completely automate the
procedure from the taking of test data thronugh identification
in the computer, a large amount of equipment and data storage
would be required. Fortunately, by including a few manual
steps, the procedure can be carried out with a minimum of
present state-of-the-art measurement equipment and data
storage devices.

The first step is to run a complete frequency sweep of the
structure, with the shaker at only one position, and record
or observe the responses at each of the n instrumented points.
By noting the changes in the phase meter reading versus fre-
quency or plotting the quadrature readings for sevgral of

the n responses in the manner of Kennedy and Pancu-”, the
engineer can determine the approximate natural frequencies

of the first n modes.

He then takes measurements of n responses and the force in

a relatively narrow frequency bandwidth around each natural
frequency and at a high frequency w, which is above or
slightly below the n-th mode. The ghaker is moved to
another of the n points and a similar set of measurements

is recorded. This process is repeated until the structure
has been excited at each of the n points of interest. The
data obtained are digitized and put in the form of a real
and an imaginary mobility matrix for each selected frequency.

It is not necessary to digitize and store all the information
at once. The only two mobility matrices that must be stored
in the computer throughout the identification process are

the real and imaginary n x n mobility matrices for w, .

All other data can be digitized, put into matrix forﬂ, and
provided on demand for computation after which they can be
discarded.

17



THE IDENTIFICATION PROCESS

Figure 3 illustrates the logic steps in the identification
process (it is not a flow chart for a computer program).

The first step is to obtain the imaginary mobility matrix
at the high frequency w,. Then take the real and imaginary
mobility matrices at anp frequency and iterate, using
Equation (17), to obtain the gamma vector of the dominant
mode at the chosen frequency. From Equations (22) and (25},
an estimate of the identified natural fregquency Q. of the
dominant mode is determined. :

If the identified natural frequency Q. is acceptably close,
in terms of a chosen criterion, to thd forcing frequency

at which the mobilities were measured, then the modal
parameters are calculated and stored. If the forcing fre-
quency is not acceptably close to the identified natural
frequency, then the mobilities at another frequency in that
range are taken and the calculation repeated. The forcing
frequency may be considered acceptably close to the natural
frequency when the calculations at several successive fre-
quencies yield the same identified natural frequency and
gamma vector within very small percentage deviatiomns.
"Acceptably close", as will be shown later in this report,
might be 20 percent above or below the natural frequency
depending on the accuracy desired and the number of fre-
quencies at which measurements were taken. However, with
modern recording equipment, there is little excuse for not
having measurements within a cycle or two of the natural
frequency, particularly as the sweep can be nearly continuous
along a band containing the natural frequency.

When the modal parameters nf the dominant mode in the chosen
frequency bandwidth are calculated, the calculations move on
to the next measured bandwidth and so on until n modes have
been covered.

Although the choice of the first bandwidth to be considered
and the choice of the first forcing frequency within that
bandwidth are completely arbitrary in the theory, it would
be logically simplest to begin with the lowest measured fre-
quency in the lowest bandwidth and progress successively
upward in frequency.

When all n modal mass matrices, damping matrices, and
stiffness matrices are calculated, they are summed according
to Equations (31), (32), and (33) to give the coefficients
in the equations of motion.
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TESTS OF THE THEORY

COMPUTER EXPERIMENTS

Advantages and Disadvantages

A series of computer experiments was designed to test

the practicality of this theory, within the limitations

of the assumptions, both in terms of the numerical operaticn
on a computer and in terms of unavoidable experimental error
in measuring mobility. The computer experiments offer very
significant advantages over laboratory experiments at this
stage of research. Computer experiments allow use of a
control model for which the exact answers are known, thereby
making it possible to evaluate the accuracy of the identified
parameters. The computer experiments can be conducted with
complete knowledge of the types and magnitudes of input
errors, something which would not be known in a laboratory
test. Because the computer experiments can be run at very
low cost and at very high speed, more information per dollar
can be determined and the experiments can use a more com-
plicated type of structure than would be practical in
laboratory experiments designed to test the theory.

The major disadvantages to computer experiments are that
they must be based on certain analytical assumptions and
that they cannot, of course, simulate the degree of reality
that physical experiments reflect. Computer experiments
cannot prove that an engineering theory is practical but
they can prove that it is impractical, should that be the
case, in a most efficient and informative manner.

Simulated Test Data

A 9000-pound-gross-weight helicopter stiffly suspended at

its main landing gear and tail gear was used as the analytical
test model. The EI and mass parameters shown in Table I

are based on the parameters of the Kaman UH-2 single-rotor
utility helicopter, which is structurally typical of heli-
copters of its class.

The relatively stiff supports at the landing gear stations
simulate a jack-type suspension resting on concrete pads
wnich have essentially infinite ground impedance over the
frequency range tested. When identification has been com-
pleted, the jack stiffnesses can be subtracted directly from
the stiffness matrix to give the stiffness matrix of the
free body. This can be accomplished by replacing the
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diagonal term at the support locations by minus one times the
sum of the off-diagonal terms in the row or column. The
chosen stations, or points of interest, were selected to
include the pilot's seat, main rotor hub station, main and
tail gear, tail rotor and significant mass concentrations

on the helicopter.

The helicopter was represented as an elastically continuous
Bernoulli-Euler beam in transverse bending with 1/EI varying
linearly between the stations listed in Table I and with up

to 5 percent structural damping. The masses were concentrated
as shown in Table I. The mobilities of this beam were cal-
culated over the frequency spectrum and statistically polluted
with errors to simulate test measurements.

TABLE I. MASS AND STIFFNESS PARAMETERS OF BEAM
REPRESENTATION OF HELICOPTER
Stiffness Spring Rate
Stgtion EI 2 7 Masses to Ggound
(in.) (1b-in.” x 10°) (1b) (lb/in.)
0 350 11.2 e
60 350 2840.0 =
140 3000 2530.0 10,000
180 5700 2000.0 =
220 5600 1205.0 =
260 3600 203.0 =
300 2600 65.6 =
340 1600 46.0 =
400 650 92.0 10,000
460 500 115.0 =

21



ERRORS USED

Txges

Measurements of the complex mobilities will be subject to
experimental errors of various types such as errors in
calibration, errors due to the capacitive reactance of
loads, errors resulting from mismatching of equipment,
errors due to extraneous signals, and errors due to random
noise. Some errors will depend on such variable environ-
mental conditions as temperature and humidity.

In general, all errors can be divided into two classes:
"random" or "accidental" errors which, in a large number

of replicated measurements, are likely to be negative as
often as positive; and "systematic" or "bias" errors which
bias the arithmetic mean of many measurements. Both types
of measurement errors have been incorporated in this study.

There is no definitive probability distribution for errors

of each type in impedance testing practice. Private dis-
cussions with several authorities in the fields of impedance
testing yielded estimates of maximum accidental error ranging
from plus or minus a few percent to plus or minus 10 percent.
Estimates of maximum accidental phase angle error were
vaguely stated either as plus or minus a few degrees or

plus or minus 1 degree. Proper test conditions were assumed.

It would have been reasonable to have assumed the accidental
measurement errors to be distributed according to the Gauss-
Laplace law but, to simplify the calculations, the authors
distributed the accidental error in a purely random manner
using a random number computer subroutine. The resulting
rectangular distribution of accidental error between the
selected limits is very conservative compared to the cus-
tomary definition of the limits at three standard deviations
from the mean of a Gaussian curve.

Magnitudes

Using the very limited information available, the authors
selected an 8 percent bias error on the absolute value of
the amplitude/force ratio as reasonably representative of
the bias error that could be expected in an impedance test
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on a helicopter. An accidental error of plus or minus 8
percent on the absolute value of the amplitude/force ratio
distributed randomly was considered to be a conservative
representation of the accuracy attainable. An accidental
error in phase measurement randomly distributed between

plus and minus 2 degrees was judged to be within the present
state of the art.

No bias error on phase angle was used because analysis
showed that phase bias has a negligible effect in the
operation of this theory.

In the course of the study, computer experiments were run

on the developed impedance theory using errors ranging from
plus or minus 2 percent to 10 percent randomly distributed
on amplitude/force, bias errors from 2 percent to 10 percent
on amplitude/force, and randomly distributed phase errors
from plus or minus 1 degree to plus or minus 5 degrees.

Bias Phase Error

A real driving point mobility'measured at a frequency “n
greater than the n-th natural frequency may be expressed as

2 2 2
yR ~ 9 n-1 Ql ¢ 2, l_(wh \ %n
kkw W _ 2 ki 2 2 2
h o “h{i=1 M.u, Mn\a_ /gz N (wh _1>
q 2 (34)
n
and the imaginary driving point mobility as
0. 2
h
n-1 ¢, .2 w, 2 aZ
oI =213 ki 1 (%) n
kkw, — w_]:_ . \, 2 2 2
h “hli=1 7’1 7’[n o /gz = (“’h —l) (35)
Q 2
n

It is seen that each of the first n-1 terms in Equation (34)
is less than each corresponding term in Equation (35) by one
or more orders of magnitude for values of g equal to or less
than 10 percent. Unless w, is within only a few percent of
the n-th natural freguency, the last term in Equation (35)

will be larger than the last term in Equation (34). There-
fore, we can expect the real driving point mobilities at Wy

23



to be substantially smaller than the imaginary driving point
mobilities. In general, this relationship will hold true
for the off-diagonal terms also.

If the phase angle a is in error by a constant small amount
€, the measured imaginary mobility at high freguency can be
expressed as

I I

R
= |y| i + €) =Y + €Y
klw, measured | k1w, sin(a ) klw, S klwy (36)
R . I .
But Yklw is small compared to Yklw , and € is a small

h h

number in the neighborhood of .05 radian. The difference
between the exact imaginary mobility at high frequency

and that calculated with a small phase angle error is the
product of two small numbers. Thus, we can conclude that
high frequency imaginary mobility is negligibly affected by
phase error.

However, a bias phase angle error can have a very significant
effect on the magnitude of the real mobility elements. The
kl-th measured real mobility is given by

_JR LI
(o + €) = Yklw EYklw (37)

R _
Yi10 measured = ¥lx1le cos

Because € 1is a bias phase error which is the same for every
element, Equation (37) can be written in matrix form as

v

_ roRy ol
w'measured [Yw] E[Yw] (38)

Premultiplying Equation (38) by the inverse of the imaginary
mobility matrix measured at high frequency, w, gives the
following expression for the eigenvalue problem of interest:

-1 ,I

I .,-1,,R
[Yw] (39)

I ,~-1 R I
v, 1 ¥, heasured ~ [Ywh] S C[Ywh]
But the eigenvectors of the first term and the eigenvectors
of the second term are identically gamma. The eigenvalues
of Equation (39) are not used in the theory, and the eigen-
vectors are the same whether or not the bias phase error ¢
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is zero. Bias phase error has therefore not been included
in the computer experiments.

THE GAMMA VECTOR

As shown in Figure 3, the gamma vector is calculated by
iteration using Equation (17) at each frequency of measure-
ment w,. Figure 4 shows the manner in which the elements

of the"gamma vector vary versus frequency when calculated
from input mobility data having 8 percent bias error and

+8 percent random error on absclute amplitude and +2° random
phase angle error. The frequency range covered in Figure 4,
1l to 30 cps, shows a performance that is typical throughout
the entire range from 1 to 1400 cps. Three of the ten
stations were eliminated from the plot of Figure 4 for pur-
poses of clarity.

We notice in Figure 4 that the elements of the gamma vector
become very nearly equal to the exact elements of the gamma
vector of the dominant mode in the vicinity of a natural
frequency. Only in those frequency bands where the degree
of dominance of any one mode is eclipsed by the error range
of the data do the magnitudes of the gamma vector elements
fluctuate wildly. As can be seen in Figure 4, these bands
are narrowly confined: e.g.,4 to 6 cps, 13 to 16 cps.

Figure 4 does not clearly show how close to the exact gamma
vector the calculated gamma vector becomes at a forcing
frequency near the natural frequency. Therefore, Figures 5
through 14 show comparisons of the exact gamma vector of
each mode to the gamma vector calculated at the nearest
forcing frequency to the natural frequency. The input
mobility data is from a randomly selected case having the
error ranges mentioned above.

In Figures 4 through 14, the gamma vectors are normalized
on the largest element. It is evident from the derivation
that the manner of normalization of the gamma vector is
entirely arbitrary in this theory.

NATURAL FREQUENCIES

For each gamma vector that is obtained, the natural frequency
of the dominant mode is calculated using Equation (25).
Figures 15 through 17 show the exact natural frequencies as
lines parallel to the ordinate lines and parallel tc the ab-
scissa. The calculated values of natural frequency cluster
clcsely about the true value except in narrow bands between
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+1.0

-—— EXACT
0 CALCULATED

~1.0 | ] | |
0 100 200 300 400 500
STATION (IN.)
Figure 5. Gamma Vector of the First Mode

Calculated at 3 cps Using Mobility
Data With Error Ranges of 8% Bias
and +8% Random on Amplitude and +2°
Random on Phase Angle. The Damping
g is 5%.
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Figure 6. Gamma Vzcisr of the Second Mode
Calculates at 9 cps Using Mobility
Data #ith frror Ranges of 8% Bias
and +4% Kaadom on Amplitude and #2°
Random cn Phase Angle. The Damping
g is 35%.
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400

Gamma Vector of the Third Mode
Calculated at 21 cps Using
Mobility Data With Error Ranges
of 8% Bias and +8% Random on
Amplitude and +2° Random on
Phase Angle. The Damping g

is 5%.
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Figure 8. Gamma Vector of the Fourth Mode
Calculated at 40 cps Using Mobility
Data With Error Renges of 8% Bias
and +8% Random on Amplitude and +2°
Random on Phase Angle. ‘“he Damping

g is 5%.
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Figure 9. Gamma Vector of the Fifth Mode

Calculated at 100 cps Using
Mobility Data With Error Ranges
of 8% Bias and +8% Random on
Amplitude and +2° Random on
Phase Angle. The Damping g

is 5%.
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Figure 10. Gamma Vector of the Sixth Mode
Calculated at 150 cps Using
Mobility Data With Error Ranges
of 8% Bias and +8% Random on
Amplitude and +2° Random on
Phase Angle. The Damping g
is 5%.
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Figure 11. Gamma Vector of the Seventh Mode
Calculated at 190 cps Using
Mobility Data With Error Ranges
of 8% Bias and +8% Random on
Amplitude and +2° Random on
Phase Angle. The Damping g
is 5%.

88



+1.0

——— EXACT
0 CALCULATED

RN

¥
| | © | ! !
0 100 200 300 400 500

-1.0

STATION (IN.)

Figure 12. Gamma Vector of the Eighth Mode
Calculated at 310 cps Using
Mobility Data With Error Ranges
of 8% Bias and +8% Random on
Amplitude and +2° Random on
Phase Angle. The Damping g
is 5%.
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Figure 13. Gamma Vector of the Ninth Mode
Calculated at 550 cps Using
Mobility Data With Error Ranges
of 8% Bias and +8% Random on
Amplitude and +2° Random on
Phase Angle. The Damping g
is 5%.
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Figure 1l4. Gamma Vector of the Tenth Mode
Calculated at 1150 cps Using
Mobility Data With Error Ranges
of 8% Bias and +8% Random on
Amplitude and +2° Random on
phase Angle. The Damping 9
is 5%.
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the modes, such as at 5 cps where neither the first nor the
second mode is clearly dominant.

Figures 15 through 17 illustrate the process of identifica-
tion which is examined in this report. Consider that we
know that there are ten modes between 0 and 1500 cps, but
we do not know precisely the values of these natural fre-
quencies. At 1500 cps we measure a ten-by-ten matrix of
mobilities which we call [Y .

(wy)
We take the ten-by-ten mobility matrix measured at 1 cps
and determine the gamma vector which we use in Equation (25)
to predict the first natural frequency at 3.24 cps. Now we
take the measured ten-by-ten matrix of mobilities at 3 cps,
the closest frequency to 3.24 cps for which we have measure-
ments, and predict the first natural frequency to be 3.15
cps. Because the forcing frequency in this case, 3 cps, is
very close to the predicted natural frequency, we accept
3.15 cps as the correct value. The gamma vector determined
from the data taken at 3 cps is considered to be the first
mode gamma vector.

Similarly, using data at 6 cps, we predict a natural fre-
quency at 9.289 cps, so we take the data at 9 cps and predict
the natural frequency to be 9.102 cps. The gamma vector
fcund at 9 cps is then accepted as the second mode gamma
vector. This process is continued throughout the range.

It would have been possible to begin at any arbitrary fre-
quency rather than calculate the modes in sequence, but

there seems tc be no advantage in so doing. Note that the
calculations pertaining to any given mode are independent

of the calculations pertaining to the other modes.

With a little care and some confirming calculations at
additional frequencies, we will avoid the confusion that
might result from operating at "crossover" frequencies
such as at 5 cps.

Table II shows a possible sequence of calculations of the
natural frequencies. In these experiments, mobility data
were measured in simulation at once every cycle per second
between 1 cps and 30 cps, once ev>ry 10 cycles per second
between 30 cps and 400 cps, and once every 50 cycles per
second between 400 cps and 1400 cf
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TABLE 1I1I. NATURAL FREQUENCY PREDICTIONS USING MOBILITY
DATA WITH 8 PERCENT BIAS ERROR, _4_-8 PERCENT
RANDOM ERROR AND i2° RANDOM PHASE ERROR
orcing Frequency at
Which Measurements Predicted Natural Exact Natural
Were Taken Frequency Frequency
(cps) (cps) (cps)
1 3.24 -
3 3.15 3.14
6 9.29 -
9 9.10 9.10
14 20.80 =
21 20.80 20.80
40 41.10 41.19
50 41.20 -
70 101.90 =
100 101.30 101.40
130 153.30 =
150 154.90 154.90
180 190.10 -
190 190.10 190.1¢
250 314.10 =
310 309.30 309.40
450 560.70 -
£590 561.90 562.30
900 1231.60 -
1250 1147.50 -
1150 1145.20 1145.10
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IDENTIFICATION OF DAMPING COEFFICIENT

The structural damping coefficient is determined using
Equation (29). 1If the structure has a type of damping
such as viscous damping which cannot be rep'esented using
a scalar multiplier, then the damping term may be approxi-
mated by identification of a different damping coefficient
for each mode. However, in the test case used in this
study, we employed the conventional representation of
structural damping as a scalar multiplier of the stiffness
matrix in phase with the velocity.

Table III shows the identifi.ed values of damping coefficient
for each cf the modes of a structure with a constant 5 per-
cent structural damping coefficient. The input mobility data
had an 8 percent bias error and a +8 per-ent random error on
amplitude ind a +2° random phase error.

TABLE III. IDENTIFIED STRUCTURAL DAMPING COEFFICIENT USING
MOBILITY DATA WITH 8% BIAS AND +8% RANDOM ERROR
ON AMPLITUDE AND +2° RANDOM PHASE ERROR. EXACT
VALUE OF DAMPING COEFFICIENT IS .050.
Forcing Frequency at
anct Natural Which Measurements Identified Value
Frequency Were Taken of Damping
(cps) (cps) Coefficient
3.14 3 .051
9.10 9 .050
20.80 21 .049
41.10 40 .050
101. 40 100 .048
154.90 159 . 045
190.10 190 .050
309.40 310 .049
562.30 550 .048
1145.10 1150 .049
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IDENTIFIED MASSES AND STIFFNESSES

Figure 18 shows the identified mass matrix obtained using

a typical case of input mobility data polluted with 8 per-
cent random and bias error on amplitude and 2° random phase
orror. Comparison with the exact mass matrix, shown in
Figure 19, shows recasonably close agreement. The identified
mass matrix is fully populated, but the off-diagonal terms
are all of small magnitude.

The question naturally arises whether by pure chance the
random errcrs in this randomly selected case so fell as to
yield an unusually accurate identificaticn. To statistically
study the c¢ffects of random input error, the computer was
programme«d to make identifications from 25 simulated rep-
licated tests with errors of +8 percent random and 8 percent
bias on amplitude and +2° phase angle error in the input
mobility data.

In Figures 20 through 30, the exact value of the identified
parameters is shown a3 a circle, the mean of the identified
parameters as a short horizontal line, and the range of six
standard deviations (+3 standard deviations) as a vertical

line.

The mean value is the "expected value". It is most probable
that the identified parameters from any one test will fall
close to the mean. The probability of the magnitude of any
identified parameter falling at or beyond the extremities

of the vertical line is less than three parts in 1000.

In Figure 20, the range of error in the identification of
the diagonal masses remains small over three orders of
magnitucde. The off-diagonal stiffness terms, urlike the
off-diagonal mass terms, are not very small. Therefore,
all the stiffness terms are shown, column by column, in
Figures 21 through 30.

The mean of the identified values of the parameters is

quite close to the exact value except when the value of

the parameter is quite low. In general, these plots show
that the error spread increases as the numerical significance
of a parameter value (as compared to the maximum in the row
or column) decreases. This is not a surprising finding.

Considerable care should be exercised in examining the
plots. First, the logarithmic scale exaggerates the
statistical spread below the mean. Secondly, the scales
differ among various plots to magnify the numerical data.
The ordinate scale of Figure 29, for example, is an order
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DIAGONAL MASS MATRIX ELEMENTS (LB-SECz/IN.)
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ELEMENT STIFFNESS (LB/IN.)
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ELEMENT STIFFNESS (LB/IN.)
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ABSOLUTE VALUES OF STIFFNESS MATRIX ELEMENTS (LB/IN.)
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ABSOLUTE VALUES OF STIFFNESS MATRIX ELEMENTS (LB/IN.)
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of magnitude lower than the ordinate scale of Figure 28.

It would appear from an examination of Figures 20 through

30 that the best identification would be obtained by taking
the mean value of many identifications of a parameter, but
computer experiments have shown that such is not the case. The
"best identification" of a system's parameters requires not
only that the value of each parameter approximate the "true"
value, but that the values of all the parameters be mutually
consistent as a set which describes the physical system. It
was found through computer experiments that the mean values
of identified parameters, each of which closely approximated
the true value, collectively produced poor results in an
attempt to reproduce the mobility data from which they were
derived. On the other hand, parameters identified from one
consistent set of mobility data (i.e., from one test) produced
excellent results in reproducing the response even though
most of the individual values were each poorer approximations
of the true values than were the means of the identified
parameters from many tests. The lack of consistency {(or
compatibility) in the system of equations formed using the
means of the identified parameters was more important than
the accuracy of the approximation of each term.

The conclusion is that statistical improvement in system
identification from test data can be achieved by using the
mean mobility data from replicated tests. The averages of
the identified parameters from many tests should not be
used; the data from many tests should be averaged and one
set of consistent parameters identified using the averaged
data.

REPRODUCTION OF RESPONSE

For an identification process to be satisfactory as an
engineering tool, the equations of motion formed from the
identified parameters should, when solved, yield a mobility
response that approximates the actual response of the heli-
copter. As noted above, parameters which are accurate are

not necessarily consistent. Only a consistent set of iden-
tified parameters will yield the mobility responses from which
they were obtained.

Figures 31 through 41 show the magnitudes of the identified
parameters of two specific cases from the sample population
of 25 cases used in generating the data of Figures 20 through
30. Figures 31 through 41 illustrate the parameter values
that might be identified from two separate tests in which
there is 8 percent random and bias error on amplitude and
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2° random error on phase. These two sets of identified
parameters were used ac the parameters in the linear
equations of motion to generate mobility frequency responses.
Figure 42 shows how closely each of these cases, along with
a third case, approximates the exact response of the hub
station to an excitation at the hub. It is interesting to
note that gross differences in the identified values of off-
diagonal stiffness terms, such as in Column One (Figure 32)
or in Column Five (Figure 36), do not have a detectable
effect on the mobility response of Figure 42.

The accuracy of the responses shown in Figure 42 for hub
station driving point represents the sort of accuracy that
has also been found for hub to pilot's seat responses. All
the peaks and antiresonances evident in the exact response
are evident in all the identified responses, and all occur at
or very near the exact frequencies.

Figures 43 through 45 show the accuracy of response repro-
duction with three other levels of input data error from
arbitrarily selected cases. The remarkably accurate re-
production of response for all levels of error from 2 percent
to 10 percent indicates that the consistency of the iden-
tifications from individual tests is relatively insensitive
to error.

Examination of this data leads us to the hypothesis that
consistent, but inaccurate, identifications might be quite
satisfactory for accurate predictions of the response of
the helicopter to various forces and that consistency,
rather than accuracy, of identified parameters might be
the important factor in accurate determination of loads
from accelerometer data on a mobility-calibrated aircraft.

When the identified parameters are used in equations of
motion to reproduce the mobility response, the statistical
distribution of mobility in values in the reproduced response
is not the same as the distribution of error in the input,

or measured, mobilities. Figures 46 through 53 show the
error spread in the reproduced mobilities in comparison to
the error spread in the corresponding measured mobilities,
the latter of which is shown shaded. The sample population
of mobility and phase consists of approximately 85 values

of frequency across the spectrum.

Case 5C, for example, represents one test in which the
measured mobilities are polluted with 5 percent bias error
and +5 percent random error on absolute amplitude and +1°
random error on phase. Figure 46 shows the distribution of
amplitude error, at all measured frequencies, for the
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ABSOLUTE VALUE OF ELEMENT STIFFNESS (LB/IN.)
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ABSOLUTE VALUE OF ELEMENT STIFFNESS (LB/IN.)
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ABSOLUTE VALUE OF ELEMENT STIFFNESS (LB/IN.)
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amplitude at the hub station due to forcing at the hub sta-
tion in this one simulated test and rerun of the identified
equations. Figure 47 shows the distribution of phase error
for the same case.

Figures 50 through 53 display the data for response at the
pilot seat station due to forcing at the hub station.

In general, there is a greater central tendency in the re-
produced response than in the measured input data. This is
a result of the averaging effect of the identifier. 1In
Figures 46 and 50, the bias effect is noticeably diminished
irn the rerun distribution. The greater spread in the rerun
error results, of course, from the fact that the measured
data has "white" random spread between absolute limits while
the rerun data is spread in a more Gaussian-like manner.
The mode of the rerun mobilities is closer to the actual
value than the bias of the input in Figures 46 and 50 and
no> worse than the bias in Figures 48 and 52.

It is practical to use the mean of the mobilities determined
by rerunning each of many identifications and, as noted pre-
viously, practical to make one identification from the mean
of measured mobilities. However, as previously discussed,
it is not practical to operate with the mean of identified
parameters. Averaging mobilities is beneficial; averaging
parameters is not.
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ADDITIONAL OBSERVATIONS

SWEEPING OUT THE DOMINANT MODE

Equation (20) describes a method of removing the dominant
mode from the mobility eigenvalue equation, Equation (17),

so that iteration will converge on the next most dominant
mode. It is not necessary to use Equation (20) in a prac-
tical helicopter situation because mobilities will be
measured throughout the frequency spectrum and, as demon-
strated, each mode will be dominant at some frequency even

if the driving point mobility shows no peak in that frequency
band.

Equation (20) was, however, experimented with in the computer
experiments and, as expected, the accuracy of the second

most dominant mode calculation was substantially worse

than the calculation of the dominant mode. It was judged
that reasonable measurement errors in the mobility matrix
would make calculations of successively less dominant modes
than the dominant and second dominant numerically impractical.

Additional complications attended using Equation (20) for the
second dominant mode. In whatever sequence the calculations
proceed regarding frequency, there is quite a good chance
that the second dominant mode at any frequency is a mode
which was already calculated as the dominant mode in a pre-
vious calculation rather than being the nearest uncalculated
mode. At frequencies "between modes" where dominance is
seriously confounded by measurement errors, wild variations
may be found in the calculated values of the second dominant
mode.

Because the use of Equation (20) is unnecessary, and because
of the confusion that might result from such calculations,
Equation (20) was not used in the identification process in
the computer experiments. The numerical results of computer
experiments on Equation (20), being of no value to the
engineering implementation of the theory, are not presented
in this report.

DETERMINATION OF MODE SHAPES

Using Only Mobilities

It was mentioned in the Derivation of the Modal Eigenvalue
Problem that iteration on the transpose of Equation (16)
converges on the normal mode eigenvector. The normal modes
are not used in this theory of identification; therefore,

83




none were calculated in the computer experiments. However,
the accuracy with which the normal modes could be calculated,
using the transpose of Equation (16), should be the same as
that attending the calculation of the gamma vectors. As can
be seen from Figures 5 through 14, a high degree of accuracy
can be achieved allowing the assumptions upon which this
study is based.

With Known Masses or Stiffnesses

There are situations in helicopter engineering in which the
analyst has a legitimately high degree of confidence in the a
priori determination of either stiffness or mass. For ex-
ample, in a very light structure containing many highly
concentrated loads which can be weighed on a scale (such as
many widely separated packages of heavy, concentrated elec-
tronic gear in a structurally light boom), the engineer can
rely reasonably well on the lumped mass matrix obtained from
Weights Department data. In other situations, a very re-
liable stiffness distribution might be available from use of
an advanced finite element technique (such as the generalized
quadrilateral technique used on homogeneous bodies of rev-
olution like long tapered shafts) while the mass is clearly
distributed, leaving the accuracy of the lumped mass matrix
questionable.

When either the mass or the stiffness matrices are so reliable
that the parameter can be considered "known", then the engi-
neer can obtain either the dominant gamma vector or normal
mode vector frcm the mobility matrix without obtaining a
mobility matrix measurement at any other frequency.

From Equation (15) .

i=1
and from Equation (31),
N
ml =2 W igyy 0T (25

Postmultiplying Equation (15) by Equation (31) gives

R

*R : oo 120
) LIRSS 2H (40)

=1

(y, \1[m] =

et
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Therefore,

R _ *R
[Y(m)][m]{¢}k - nzkyk(w){¢}k (41)

The left-hand eigenvector of Equation (40) is obtained by
iteration on the transpose.

R 3 - *R R
[ml[Y(m)]{Yrk = wzkYk(m) V3 (42)

it is therefore also easily seen that
I _ *1 1
(Y VImd{ody =My Yy ) 0y

I - *T .,
(m] 0¥7 )TV h =My Y ) Y

I 2. kT
(Y  (kI(ed = o "m0, oy

I . *I
(K1 IYE 1O = o 7m0 T Oy

R N 2 *R .4
(Y kI {e0 = S 7MYy () *5 0k

R ] _ 2 *R .
[k][Y(w)]{\}k = kakyk(m)“}k (43)

Equations (41) through (43) give four additional eigenvalue
equations each for determination of the normal mode vectors
and the gamma vectors by iteration. The authors feel that
the eigenvalue equation formed by multiplication of the
mobility matrix and the damping matrix would not be reliable
in actual engineering practice for determination of the modal
and gamma vectors because of the lack of reliable a priori
damping parameters and the generally small numerical sig-
nificance of damping.
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INCOMPLETE SUMMATIONS

Equations (31) through (33) show that the physical parameters
are equal to the sum of n n x n modal parameter matrices over
the n modes of an n degree-of-freedom system. Each modal
parameter matrix, [m]; for example, is of rank 1 and the

sum of q of these, where g < n, is of rank q. The sum of

q modal parameter matrices will not, in general, approximate
the physical parameter matrix even when n - q = 1. The
reason for this is that the generalized parameters,® . and
7‘1' do not necessarily become small for higher modes. 1In

fact, the generaiized stiffness usually grows larvuger with in-
creasing natural frequency. The sum of the first nine modal
stiffness matrices in this study has no resemblance to the
physical stiffness matrix, but the addition of the tenth modal
stiffness matrix causes the sum to approximate the physical
stiffnesses very precisely.

Table IV shows the values of the generalized parameters mode-
by-mode. The generalized mass and stiffness in Table IV were
obtained by normalization on the modal eigenvector, not by
norimalization on the gamma vector as done in the identifica-
tion program, and these values should be used only with a
gamma matrix which is the unnormalized inverse of a normalized
modal eigenvector matrix. However, Table IV illustrates the
point that the scalar modal multiplier for stiffness grows
larger, in this typical case, with increasing natural fre-
quency and that the generalized mass does not L~ come negligible
for the higher modes.

It should be noted that the matrix {Y}i{y}z in Equations (31)

through (33) are not idempotents and the vectors are not the
eigenvectors of mass or stiffness. Neither are the general-
ized masses or generalized stiffnesses eigenvalues, of course,
of their respective matrices. It follows that the gamma
vectors are not orthogonal except with respect to the mo-
bility matrix at any frequency, as shown in Equation (21).
Any matrix of the form oh {Y}? when raised to any integer
i i’

power p is, of course, equal to the matrix to the first
power multiplied by the p-th power of the scalar {Y}?{Y} 3
i i

Equations (31) through (33) superficially resemble the
expression of a matrix in terms of the summation of prin-
cipal idempotents in this respect, and in the fact that
cross products of the gamma vectors do not occur. No
relationship exists between the gamma vectors and the
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eigenvectors of the mass matrix irrespective of the stiffness
matrix, and vice versa.

INFLUENCE COEFFICIENTS

The influence coefficient matrix may be analytically expressed
as the inverse nf Equation (32).

@=3 L (o} {8)] )
i=1 M.,

Note in Table IV that the value of niQiZ grows larger with

increasing natural frequency; therefore, the scalars of
Equation (44) will become small for the higher modes. Far
example, in Table IV, it is seen that the contribution of
the tenth mode to the influence coefficient matrix is less
than one one-thousandths the contribution of the first mode.

It is possible, therefore, to approximate the influence co-
efficient matrix quite accurately term-by-term by summing
Equation (44) over less than the full n modes, and this
approximation will hold for the fully populated influence
coefficient matrix. If the calculations for the summation
of Equation (44) over p < n modes were exact, then the
resulting influence coefficient matrix would be singular.
However, measurements are not exact, and therefore it is
very unlikely that the approximate flexibility matrix will
be singular; it might even be well conditioned. It will
have the fault of not containing information about the
higher modes. However accurate, within reason, any measured
influence coefficient matrix might be, the stiffness matrix
obtained by inverting it should be regarded as having ab-
solutely no physical meaning unless the order of the matrix
is trivially small.

IDENTIFICATION OF DIAGONAL MASSES WITH ONLY A FEW MODES

If it is known, or can be reasonably assumed, that a diagonal
mass matrix is a satisfactory representation of the inertial
terms in the equations of motion of the helicopter, then the
physical masses may be identified via this theory using only
the first few modes.
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TABLE IV. SCALAR MODEL PARAMETERS OF BEAM
REPRESENTATION OF HELICOPTER

Generalized Generalized
Natural Mass-Normalized Stiffness-Normalized
Frequency Modal Vector Modal Vector
(cps) (lb-sec?/in.) (1b/in.)
ode Qi n; 7I“Qi2
I 3.144 8.1375 3.176 x 10°
I1 9.103 4.5545 1.49 x 104
III 20.791 .4952 8.48 x 10°
v 41.121 1.662 1.111 x 10°
v 101.35 .7054 2.86 x 10°
VI 154.897 .0338 3.20 x 10%
VII 190.12 .3504 5.00 x 10°
VIII 309.35 .6856 2.59 x 10°
IX 562.277 .3258 4.07 x 10°
X 1145.31 .2970 1.54 x 10/
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For physical masses which are only diagonal, the following
holds:

N ) N N
m =2 M:Y,; =1L L MYy :Yss
kk =1 4 ki i=1 §=1 i'ki'ji (45)

This leads immediately to the fact that

™M 2

Y.. = 0 (46)

N
z Yy
i=1771 ki ji

=1
i Kk

[ S P W |

for diagonal mass matrices. Equation (45) may also be ex-
pressed as

i M vy’ i m : (47)
m = A Y ok YAl L, 47
kk j=p 0 1 ki j=1 1 qu#k ji

The first term obviously converges monotonically to the
physical diagonal mass and the second converges to zero
when g = N. The second term is likely, in many cases, to
converge more or less nearly monotonically also because of
the relatively large first generalized mass and increasing
changes in sign of the gamma vector with increasing modes.

Table V shows a close approximation to the ten actual diag-
onal masses summing Equation (47) over only three modes for
the specimen used in this study. The convergence is dramatic
compared to that obtained using the first summation of
Equation (45). As this matter is beyond the scope of this
study, the subject is not being pursued further in this
report.
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TABLE V. APPROXIMATIONS OF DIAGONAL MASSES BY

q N
kk® 1) 5oy i VkiTid
Approximate Masses
Exact
' Masses 5 . Mode Modes Modes
Station k (l1b-sec”/in.) I I + I I + II + III

1 .029 . 046 .025 .029
2 7.337 9.322 7.020 7.352
3 6.540 5.760 6.783 6.482
4 5.179 3.741 5.361 5.193
5 3.129 1.784 3.172 3.161
6 .527 .222 .511 .532
7 .170 . 047 .153 W0
8 .119 .016 .095 « L16
9 .238 -.016 .145 . 227
10 .298 -.081 .123 .300
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IMPEDANCE AND MOBILITY

NETWORK THEORY AND IMPEDANCE

All systems which can be described by a set of second-order
linear differential equations with constant coefficients can
be depicted as a "network" or "circuit" of intersecting lines.
The dependent variables are "potentials" and are a property
of the points of intersections. The independent variables
are "flows" and are a property of the connecting lines.

Given the system in a steady state, the ratio of the dif-
ference between the sinusoidal maxima of the potentials at
adjacent intersections of a line (or element) and the sinu-
soidal maximum of the flow through that element may be termed
the absolute value of the "component impedance". As there
will be a phasing between the potential difference and the
flow, the component impedance will be a complex quantity and,
in general, will be a function of frequency.

In many systems, such as electrical circuits and simple
spring-mass-damper chains, the component impedances are
physically measurable quantities directly and obviously
identified with physical entities such as resistors, masses,
capacitors, dampers, etc. In more complicated systems such
as beams, for example, the component impedances are associated
with combinations of the material properties of sections of
the system such as the product of the modulus of elasticity
and second moment of area (EI) divided by the cube of length.
All linear structural systems, no matter how complicated, can
be mathematically duplicated in terms of dynamic response by
a network of springs, masses and dampers.

The component impedance between points i and j or a network
where i # j is minus one times the partial derivative of
the flow phasor from i to ground with respect to the poten-
tial phasor at j. This partial derivative is here called
the "element impedance" and is the ij-th term in the matrix
of impedances in the equations of motion. The component
impedance between point i and ground is the sum of the
element impedances of the i-th row in the equations of
motion.

In linear dynamic structures, the flow phasor to ground is

an impressed force and the potential phasor is, by convention,
the sinusoidal velocity at a point.
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MOBILITY OF A NETWORK

In complex assembled systems, such as helicopters, it is
generally only possible to measure the "response" of the

total system. The "response" of a complete system may be
defined as the partial derivative of the potential phasor

at point i in the system with respect to the flow phasor

to ground at point j in the system. 1In structural dynamics
this is the complex value of the steady-state sinusoidal
velocity phasor at point i on the structure to the force-to-
ground phasor at point j when the force at point j is the

only external force on the structure and is termed "mobilitv".

The response of any linear system of n components is an

n x n matrix of the partial derivatives of the potential
phasor at j with respect to the grounded flow phasor at i.
The frequency-dependent terms in the equations of motion
form an n x n matrix of the partial derivatives of the
grounded flow phasor at j with respect to the potential
phasor at i. Clearly, then, the equations of motion are
related to the response by the inverse of a matrix because
a partial derivative is related to its reciprocal only by
the inversion of the matrix of the partials.

NETWORKS IN MATRIX FORM

It is fundamental to Network Analysis that the performance
of the entire network is given by the inverse of the matrix
of the element impedance terms formed from the components
of the network. When networks are expressed in matrix form
it is usually unnecessary to draw the network diagram.
Kirchoff's Laws, Norton's Theorem, Thevenin's Theorem and
other such rules are merely special cases of the matrix
expression of a circuit or network.

IMPEDANCE MATRICES

Impedance matrices are lambda matrices4. In structural
dynamics, impedance matrices are lambda matrices of the
second degree. The response or mobility matrix is the
inverse of the impedance matrix and is not a lambda matrix.
In general, the inverse of a lambda matrix is not a lambda
matrix, and therefore the mobility matrix cannot be ex-
pressed as a polynomial in forcing frequency. For this
reason, we cannot draw a mobility or response network in
which the components are coefficients of the p-th power of
the forcing frequency; therefore, we find the network of
response of no obvious practical value.



MATRIX INVERSION AND PHYSICAL RELEVANCE

If [2'] 1is approximately equal t» the exact impedance matrix
[z], it does not follow that [z']_l 1s approximately equal to

(=] l. To prove this, expand [z] in terms of its principal
idempotents¥and let the n-th eigenvalue be small compared to
the other eigenvalues. Let

e i T
' = Bl elll I
(z'] I Ai{L,i{L,i R i){o}n{B}n [z],
1=1
where v 1s considered of the order of magnitude of }n' Then
h
(2170 = T 2 (3}, (8)]

L : i
1i=]1 "1

is not approximately equal to [z']—l because the smallest
eigenvalue of [z] is the largest eigenvalue of [z]—l. The

conditioning of a matrix which approximates an exact matrix
does not necessarily indicate whether the inverse of the
approximate matrix will approximate the inverse of the exact
matrix. For the inverse of an approximate matrix to approxi-
mate the inverse of the exact matrix, it is necessary but not
sufficient that the approximate matrix be well conditioned.
Herein lies one of the chief difficulties in obtaining mathe-
matical model parameters from test data.

THE MEASUREMENT OF MOBILITY AND IMPEDANCE

At a given frequency,

[2]{y} = (£}
If [2] is of order n, and n different force vectors are
applied, then the mobility matrix is given by

0l

(v} = (2171 = yr1e17t

However, if any column of [f] is a linear combination of
tne other columns, the matrix will be singular. One way
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to insure that [£f] is both nonsingular and well conditioned

is to make [f] a diagonal matrix: that is, to apply only one
force at a time and at a different station each time. This
is a practical way to measure mobility because excitation

force is generally an independent variable in structural
testing.

It is impractical to measure impedance directly from

(z] = [£]1y]~L

because the velocity phasor matrix is generally ill condi-
tioned except at high freguency.
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CONCLUSIONS AND OBSERVATIONS

In an n-degree-of-freedom structurally damped linear
system, the mass, stiffness and damping matrices of
Lagrange's equations of motion, the natural frequencies,
mode shapes, generalized masses and generalized stiff-
nesses can be obtained directly from impedance-type
test data.

The identification of these parameters can be obtained
with sufficient accuracy to accurately reproduce the
measured response using input data having errors that
are within the state-of-the-measurement art.

The mean of replicated measurements can be used to
identify a practical mathematical model. However, the
mean of replicated parameter identifications should not
be used because they can give a model which is not con-
sistent within itself.

Bias phase error has negligible error on the identifi-
cations.

The eigenvectors of the product of a mobility matrix
and the inverse of another mobility matrix are the
modal eigenvectors.

The first eigenvector of the product of a mobility
matrix measured at frequency w and an imaginary mobility
matrix measured near the n-th mode, for matrices of
order n, is the eigenvector of the mode which is domi-
nant at frequency uw.

Real mobility matrices are generally ill-conditioned.
The higher the frequency at which an imaginary mobility
matrix is measured, the better the conditioning.

The accuracy of identification of far off-diagonal
parameters is less important to model response than
the accuracy of identification of diagonal and near-
diagonal parameters.

If the elements of a matrix A approximate those of a
matrix B, the elements of the inverse of A will not
necessarily approximate the elements of the inverse
of B regardless of how well conditioned A might be.
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10. Diagonal masses in a ten-degree-of-freedom model have
been accurately identified using only data from three
modes.
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It is shown that the mass, stiffness and damping parameters in Lagrange's equations
of motion of an n-degree-of-freedom damped linear elastic structure can be deter-
mined directly from impedance-type test data withdut prior assumption of an intuitive
mathematical model. The damping is assumed to be such that the modal vectors are
orthogonal with respect to damping.

A method is derived for determination of the exact modal eigenvector of the dominant
mode at any forcing frequency by iteration on the damped impedance measurements
in matrix form. A similar eigenvalue 2quation yields the vector in the inverse trans
pose of the modal matrix; this vector called the gamma vector, is identified with the
dominant mode. The generalized masses, stiffnesses and damping terms are related
to the mass, stiffness and damping matrices of the equations of motion through
products of the gamma vectors.

Using the gamma vectors, obtained by iteration on test data, the natural frequencies
and other modal parameters are determined. Natural frequencies which are not
visible in response plots may be determined by this method.

Cornputer experiments were conducted to test the sensitivity of the theory to errors
in input data.

The work performed under this contract is reported in two volumes. This volume
contains the theoretical development, application of the theory and computer experi-
ments demonstrating the theory's practicali
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